Experimental demonstration of software-trained neural network inferencing in analog memristor crossbar arrays

Miao Hu, Qiangfei Xia*, J. Joshua Yang*, R. Stanley Williams, and John Paul Strachan

Hewlett Packard Labs, Hewlett Packard Enterprise, Palo Alto CA *UMass Amherst

DPE: Memristor arrays for computing

Is this true in the real ₂ world?

Parallel multiply & add through Kirchoff and Ohm's law

1961, K. Steinbuch "Die Lernmatrix" – suggests using "ferromagnetic toroids"

Memristors as highly scalable, tunable analog resistors

High ON/OFF ratio (~10⁵), supporting multiple levels

- → HPE differentiator vs competing accelerator designs
- **Advantages:**
- Well suited for streaming workloads; Key advantage is inmemory processing; Many ways to scale up
- Many Teams have been working in this field:

LBMB Grewniat Tachulany Godes Mai chiass barlabas U (S. Yu), Duke (H.Li), and many others

Dot-product Engine demonstrator

 Flexible peripheral circuit platform to study the behavior of actual memristor crossbars for inmemory computing.

Programming full memristor arrays

64x64 = 4096 memristors (TaO_x)

~6 bits at each memristor (full range of accessible

MNIST Pattern recognition demonstration

Neural network

1 layer softmax Neural network

10 values, entry with maximum value is the prediction

Partition and program (100 uS to 700 uS)

10

Columns

Programming error distribution

Computing accuracy of a 64x64 crossbar

- Crossbar parameters:
- Wire per segment ≈ 1 ohm
- Input/output resistance ≈ 1ohm
- Device resistance: 1.4k to 10k ohm (100 uS to 700 uS)
- Computing accuracy
- 150k (2.5k * 60) data points.
- Memristor is <4 bit for the given range
- Output accuracy is ~4 bit.
- Noise is nonlinear due to circuit parasitics.

Pattern "7" recognition

G_IDEAL current = Vin * G_IDEAL; G_PROG current = Vin * G_PROG

MNIST pattern recognition accuracy

- Using a software-trained weight matrix, a single 64x64 crossbar achieves 85% accuracy (90% is ideal) for MNIST with post processing
- Single-layer NN highly sensitive to even a few defects
- Next steps:
- Better matrix to conductance mapping:
- Implement the "conversion algorithm" taking non-idealities into account
- Use Multi-layer NNs more resilient to defects:

